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Clustering and fluidization in a one-dimensional granular system: Molecular dynamics and
direct-simulation Monte Carlo method
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We study a one-dimensional granular gas of pointlike particles not subject to gravity between two walls at
temperatured ¢ and T g, The system exhibits two distinct regimes, depending on the normalized tempera-
ture differenceA = (Tigni— Tier)/(Trighet Tier): ON€ completely fluidized and one in which a cluster coexists
with the fluidized gas. When is above a certain threshold, cluster formation is fully inhibited, obtaining a
completely fluidized state. The mechanism that produces these two phases is explained. In the fluidized state
the velocity distribution function exhibits peculiar non-Gaussian features. For this state, comparison between
integration of the Boltzmann equation using the direct-simulation Monte Carlo method and results stemming
from microscopic Newtonian molecular dynamics gives good coincidence, establishing that the non-Gaussian
features observed do not arise from the onset of correlations.
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[. INTRODUCTION In Ref.[12] the authors study a one-dimensional system
of pointlike particles between an elastic and a heated wall.
Granular systems have been extensively studied due bothhey emphasize that a cluster inevitably forms away from
to the theoretical challenges they preséior a recent re- the heated wall, regardless of how elastic the systefass
view, see Ref[1]) and to the applications of industrial im- long as it is not perfectly elasficThey also study the same
portance that spring from the rich phenomena they exhibifystem, but with both walls expelling the particles with a
(see Refs[2] and[3] and references thergirThese systems fixed velocity. In this case they find that the cluster forms
are characterized by an energy loss in collisions. This loss j@way from the walls and roams slowly about the system,
at the base of many interesting phenomena, such as inelashdth two groups of fast particles connecting the cluster with

: e . the “heated” walls.
collapse[4,5], where the particles collide infinitely often in . . .
finite time, and clusteringfor a sample of theoretical, simu- In Ref. [13] the same system is studied for different types

lational, and experimental approaches see H6fsg)). Dif- of boundary conditions at the heated wall. The stochastic

: . boundary condition studied has the form of a power of the
ferent mef[hods for keeping Fhe _system ”O”.‘ collapsing ha.v%elocity times the “thermal” condition(the one that pro-
been devised, such as subjecting the particles to Browmaauces a Maxwell-Boltzmann distribution in the elastic gase

fomes[lo’l?l and forging through the boundaries by putting The authors show that when the power that multiplies the
the system in a box with one or more thermal-like wadise,  orma| condition is positive the test-particle equatide-
for example, Refs12—-18). This work focuses on the latter jyeq from the Boltzmann equatipias a steady-state solu-
method. tion. Thus the thermal case does not have a steady state and
Being one of the simplest types of forcing, several authorgjevelops a cluster away from the heated wall. The mecha-
[12,13,15-17,1Phave studied a one-dimensional system innism for the growth of the cluster is explained and verified
a box with one or two heate(stochasti¢ walls. Of these, numerically.
Refs.[12,13,19 and[16] study cluster formation, although  In Ref.[15] a similar system is studied: a long thin pipe of
Refs.[15] and[16] are not strictly one dimensional. inelastic hard disks with heated wallat the same tempera-
This article studies a quasielastic one-dimensional systemure) at the ends of the pipe and periodic side walls. The pipe
not subject to gravity between two thermalizing walls. Weis thin enough for the particle order to be preserved. The
focus on two control parameters: the total inelasticity paramprobability distribution for the distance between the central
eterqgN=N(1-r)/2, whereN is the number of particles and particles is studied. This distribution gives a markedly denser
r is the restitution coefficient, and the externally imposedsystem near the center than in the elastic case, although the
temperature gradient. The parameg®t has been shown to limit to the elastic case is smooth, unlike the strictly one-
be relevant for the quasielastic syst¢d8,17,19-2] By  dimensional case of Ref§12] and[13]. In Ref.[16] the
varying these parameters we determine the region in parangame author studies the velocity correlations that this system
eter space where clustering is fully inhibited, obtaining adevelops as inelasticity is increased, showing that a consis-
fluidized state. We present a singular feature of the distributent description must take these correlations into account.
tion function for the clustering regime, and then study how In this paper we revisit the strictly one-dimensional sys-
this feature is modified for the fluidized state. tem of N pointlike particles interacting via collisions that
conserve momentum but dissipate kinetic energy. To fix no-
tation, the particle velocities after a collision are given by
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wherec; is the velocity of particle before a collision, and 800 - - - -
g=(1-r)/2, r being the restitution coefficient. For the
elastic caser(=1) the particles simply exchange velocities.

(2)

4o

articles)
\

Since the particles are pointlike, the system is then indistin- 6% \_/ ey
guishable from a system in which the particles do not inter-35 | / / i
act. £

This one-dimensional system is interesting because dissi2 400 A L
pation is the first order correction to a free gas. BesidesE | 1
results for the one-dimensional system have been found tX

) . . @ 200
have unexpected relevance for higher-dimensional problemss;

For example, in two-dimensions the particles involved in in- § /
elastic collapse lie roughly on a ling5]. Also, the © .
dissipation-induced temperature gradients calculated in Ref
[17] for the one-dimensional case inspired the authors to |
look for dissipation-induced Rayleigh-Bard-like convec- ' I
tion for a two-dimensional system without an externally im- § i
posed temperature gradigrig]. 3 0811 M

For a system with one thermal wall and open on the othera |

side, under the influence of gravity, the quasielastic systensg ¢ 4| |
may be kept fluidized17,19: any cluster that starts to form g |

is forced against the thermal wall, where it evaporates. In
[17] the test-particle equatidrii2,13,2G—which is the one-
dimensional(1D) Boltzmann equation where the limN

— oo is taken, but keepingN fixed—is successfully applied, % '
with close matching of theory and simulations even at the

level of the distribution function.

The one-dimensional system under study is left to evolve FiG. 1. (a) Time evolution of the number of particles inside the
between two thermal walls at temperatufgg; and Tygne,  cluster for a system dfl=1000 particles between two walls at the
With Tieg=<Tign;. We define the parameter same temperature forN=0.01. Note the plateau after each f4l)
Trajectory of the cluster for the same time interval. The walls are
placed ax=0 and 1. The temperature at the walls is unity, and thus
a unit of time measures how long it takes for a particle with the
thermal speed to cross the system.
to quantify how far from the symmetrical case is the system.

Under the same conditions, an elastic system has a perfectly,ch as it did in the symmetric case before colliding with a
bimodal velocity distribution with global homogeneous tem-, - By increasingA the cluster-wall collision frequency

perature equal t@Teq T ign For the sake of comparison, we grows, even obtaining short “windows” in which the cluster
simulate systems with/T e Tign=1. HereA=0 represents completely evaporates.
a symmetrical setting, whild=1 represents an infinitely By further increasing\ these windows grow larger until a
strong temperature gradient. point is reached where no cluster forms. In this fashion a
As in Ref.[12], for A=0 a cluster unavoidably forms totally fluidized state is achieved, which may be tractable
away from the thermal walls. After forming, the cluster per- with the dissipative Boltzmann equation. However, the dis-
forms an apparently random walk about the center, growingribution function obtained from the molecular dynamics
in size (and therefore magswhile the rest of the system (MD) simulations exhibits a peculiar non-Gaussian feature
grows more rarefied. With the decrease in density of thdor slow velocities. This feature is a smoothed version of the
surrounding gas and the increased inertia of the cluster, aapparent singularity of the symmetric case.
eventual collision with one of the walls is to be expected. To discern whether this non-Gaussian feature is due to
When this happens part of the cluster evaporates, and what é®rrelations or is present before they settle in, we compared
left of it is expelled from the wal(see Fig. ], thus restarting Newtonian molecular dynamics results with those obtained
the growth process. Thus not only is the system highlythrough the direct-simulation Monte Carlo meth@SMC),
clumped, but also in a nonsteady state. Nevertheless, the gadich neglects correlations. The density profiles show a
that is far from the random-walk zone has a well-defineddenser system towards the colder wall, although when the
time average for the distribution function, as is seen in Figsystem is sufficiently far from the onset of clustering the
2. A noteworthy feature of this distribution is that it exhibits density has a maximum slightly away from the wall. The
apparently singular behavior for slow velocities. profiles and the velocity distribution function obtained from
SettingA #+ 0 the symmetry of the system is broken. For DSMC are practically indentical to the ones obtained from
A<1 the cluster performs a slightly asymmetric randommolecular dynamics, except when the system is very close to
walk, spending more time near the colder wall, and therefor¢he onset of clustering. At this point the DSMC velocity
colliding more often with it. Thus the cluster cannot grow asdistribution shows a slighbut systematicoverpopulation of
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0.04 - - - . by three orders of magnitude. We discard chains of length
three or less, since they may be random encounters. Measur-
ing the total length of the cluster we have found that on

0.03 average it is of the order of 16; thus the choice of 10° as
L i link-link distance is much larger than the true distance be-
_ tween them.
= 002 As already stated, the boundary conditions are such that
. . the (homogeneoystemperature of the corresponding elastic
0.01 system(equal to\/TierTrignd is 1.
- P_\ -
. [ | | — | lll. RESULTS
' ' ' ' A. Clustering regime
0.006
- ®) - Figure 1 shows the nonsteady state of a granular system
0.005 between two walls at the same temperaturegfi=0.01. A

cluster forms away from the walls, performing a random
go.om I \ /\ walk of varying amplitude. When the cluster reaches a wall,
©0.003 part of it evaporates, and the growth process begins anew.
= L \ / _ As is usual for the quasielastic case, we relabel the par-
0.002 ticles when they collide. This enables us to visualize this
- 8 system as a group of barely interacting particles passing

0.001 through each other.
r T The picture for cluster evolution, as explained before, is
05 ) g ) 0 ) 1 ' > the following: the cluster grows because the slowest par-

ticles, due to the asymmetry of the distribution function, drift
towards the clustel13]. As it grows, the density of the gas
FIG. 2. (a) Velocity distribution function at the left wall for the surrounding it decreases, with the consequent saturation in
system referred to in Fig. 1. The distribution for particles reachinggrowth. Thus we have a “Brownian particle” of increasing
the wall (c<0) exhibits a sharp peakb) The same distribution mass moving in an increasingly rarefied medium. This “par-
multiplied by /[c[ to show that the peak behaves lij@ Y2 The ticle” will be increasingly less affected by the surrounding
microscopic velocityc is measured in units of the thermal speed. medium, until it can no longer be kept away from the walls.
The cluster moves several orders of magnitude slower
slow particles, compared to the MD results, and a correthan the thermal spedthree orders of magnitude in Fig).1
sponding relative increase in the density at the colder wallUpon reaching a wall, the front liners strike the wall and are
Both the MD and DSMC results exhibit the sharp non-expelled by it much faster than the other cluster members.
Gaussian feature even far from the clustering regime, wher€&hese particles pass through the cluster, transferring momen-
both descriptions coincide. This will lead us to conclude thatum to it, as described in Reff12]. Thus these fast particles

this feature does not arise from correlations. push the cluster away from the wall, where it can absorb
particles again. The fast particles, however, no longer belong
II. SIMULATION METHOD to the cluster.

Since the slowest particles in the gas are the ones that will

We simulate the system through event-driven moleculabe absorbed by the clustgt3], it is the number of slow
dynamics[22] and through direct-simulation Monte Carlo particles in the gas that will determine the cluster’s growth
[23]. The direct-simulation Monte Carlo procedures use theate. After the cluster strikes a wall, the expelled particles
null-collision techniqud 24] where, overestimating the colli- will be fast particles, and they will not contribute to the
sion frequency(using the maximum relative velocity within growth of the cluster during the time it takes for the gas to
a cel), the number of collisions to battempteds calculated cool down again: the only particles available for absorption
through a Poisson process. In the next step the collisions aare the ones that were available before the cluster-wall col-
attempted, choosing at random two particles within the celllision. This explains why the cluster keeps growing at ap-
and making them collide with a probability proportional to proximately the same rate it did before the collision. After
their relative velocity. Most of the molecular dynamics andthe gas has cooled down, the growth rate returns to its nor-
DSMC simulations were done with=1000 particles. mal value. This is the end of the plateau seen in Fig. 1 after

In the MD simulations we detect clusters using a geometeach cluster-wall collision.
ric criterion: we consider chains of particles that are nearer To quantify the evaporation process we proceed as in
than a critical distancéin our case 10° and 10°° to be Refs.[1] and[12]: as soon as the first particle belonging to
certain that the conclusions are independent of the choicethe cluster reaches a wall, it is expelled with a speed much
The system length is one, and with a thousand particles thiigher than the cluster velocity; thus we may consider the
mean distance between neighbors for a homogeneous systedeal situation of a cluster oM particles at rest being
is 10 3. Thus we detect particles that are uncommonly neastricken by a fast particle with velocity (in this casev
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~1). After colliding with the first particle in the cluster, the
new fast particle’s speed will be (1q). Thus, after travers-
ing the cluster, the fast particle’s velocity will be €ig)N.

Since momentum is conserved in collisions, the center of

mass of the cluster will have acquired a speed of
N N

-5
N

N

1—<1—q>N_1_(
-t

)

Uem=

Considering the cadé>1 with fixedgN, as in Ref[17], we
may simplify this expression to

1-e N

- @

Ucm™

By further considering the casgN<1 we getvcy~(. In
this limit, if the cluster reaches the wall with velocity and
is expelled from it with velocityv,, the numbem of par-
ticles evaporated will satisfly ; —v | ~ma. For the situation
shown in Fig. 1p, andv, are typically of the order of 10°
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FIG. 3. Limiting values ofA= (T ighi— Tier)/ (Trign Tier) @S a
function of gN for N=1000. yTe;Tyighe= 1 throughout. The solid
curve shows the lowest possible valiecan take without detecting
clusters. The dashed curve shows the largest possible ¥aksn
take with easy cluster detection. The small region between the

andq=10"%, hence the number of particles evaporated will CUTVes represents a zone where clusters appear erratically.

be of the order of 19

Even if the system is in a nonsteady state, the gas at the

walls (far from the random-walk zonehas a well-defined

B. Inhibition of cluster formation

Figure 3 shows the regions id\(qQN) space where clus-

time average for the distribution function. The distribution tering is inhibited forN=1000. As is to be expected, as the

function at the left wall is shown in Fig. 2. There is an

inelasticity increases, a stronger temperature gradient is nec-

apparent singularity for slow velocities. The distribution is essary to inhibit cluster formation.
asymmetric as it should be, since the particles leaving the To discern whether the non-Gaussian features of the ve-

wall (c>0) follow a Gaussian distribution. Figure 2 also
shows the distribution multiplied by|c[. Since the limit of

locity distribution function are derived from correlations in
the system we compared results from MD simulati¢iod

J[c|f for c—0~ is finite and nonzero, we conclude that the Newtonian dynamigswith results from DSMC simulations
distribution function exhibits a singularity that behaves like (no velocity correlations assumedrigures 4 and 5 show this

|c|~ %2 for slow velocities.

As shown in Ref[13], whenA =0 (the symmetric case
the distribution shown in Fig. 2 is not a solution of the
steady-state test-particle equation:

coyf(x,c,t)=qNda [ f(x,c,t)M(x,c,t)], (5)

where
M(x,c,t)=f f(x,c’,t)(c—c’)|c—c’|dc’. (6)

To establish this, let us study the behavior for sntatlf a
solution of this equation. Assume that, for small f(x,c
~0)=~fy(x)c™ % with «<1 in order to have a finite density
in the vicinity of x. Furthermore, assume thst(x,c~0)
~M(x)c”. Inserting this behavior in Eq5) we obtain
dyfo~aNMofo(B—a)cP 2. (7
Thus, in order to keep, (the amplitude of the singularity
finite, we must have eitheB=« or f=2. Integrating the
distribution of Fig. 2 we obtaifB=1. Since<2, we must

havea=1. But this corresponds to a nonintegrable distribu-

tion, and therefore the distribution cannot be steady.

comparison for a case far from the clustering threshadld (
=0.6 andgN=0.1). The temperatures of the left and right
walls are chosen so that the global temperature for the elastic
case(equal t0\TiexTrign) is 1. The curves match almost
exactly.

At the level of the distribution function, the results also
match closely. The peculiar non-Gaussian feature of the dis-
tribution function is clearly seen in Fig. 5. There is some
slight mismatch near the peak.

For the fluidized case, since momentum is conserved and
the system is stationary, the pressure is constant throughout
the system. The number density and the granular temperature
calculated here are related p~=nT(T in energy units
Thus when the normalized densityN varies little through-
out the systenin/N~ 1+ €(x)], the normalized temperature
is

T p/n ng/N 1
To p/ng nIN 1+ex)

1-e(x), (8)

thus obtaining the nearly symmetric profiles seen in Figs. 4
and 6.

Figures 6—8 compare the MD and DSMC results for cases
near cluster formation. The non-Gaussian feature of the dis-
tribution function shows a systematic deviation for DSMC
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X FIG. 6. Number density, temperature, and heat flux profiles for

) . N=1000,gN=0.1, andT .3=0.84 (A=0.173). The solid line rep-
FIG. 4. Number density, temperature, and heat flux profiles foregents results from a molecular dynamics simulation, while the

N=1000,qN=0.1, andT;¢=0.5 (A=0.6). The solid line repre-  yuts represent results from a Monte Carlo simulation.
sents results from a molecular dynamics simulation, while the dots

represent results from a Monte Carlo simulation. The density and

temperature are related y=nT and, since momentum is con-

served and the system is stationary, the pressure is constaftmulations: there is overpopulation for slow velocities. This

throughout the system. The density and temperature profiles aie explained by considering that the DSMC method, like the

almost symmetrical because the normalized density is very close tBoltzmann equation, neglects correlations. When the system

unity. approaches the clustering regime, increased dissipation in-
duces correlations which tend to make the particles collide
less[16]. In DSMC these correlations are neglected, with the

0.08 . T - T corresponding systematic overestimation in the collision fre-

; quency. This overestimation results in a lower temperature of

,,’ the system about the density peak.

I

0.06

I \ | IV. CONCLUSIONS
So.04 . .
= We have shown that a system not subject to gravity be-

- i 1 tween thermal walls unavoidably reaches a nonsteady state
! when the walls are at the same temperature. A cluster forms
002 H \ in the bulk, slowly roaming about the system while absorb-

/ - - ing particles. As it grows, the amplitude of the random walk
increases, until at last the surrounding gas cannot keep the
%2 01 ' 0 ' 01 ' o2  cluster away from the walls. When the cluster reaches a wall,

¢ a part of it is ejected by the wathrough the clustefrela-

FIG. 5. Velocity distribution function at the cold boundatgft ~ beling the particles on collisionseffectively pushing the
wall) for the system referred to in Fig. 4. The solid line representscluster away from the wall, and leaving it to grow again.
results from a molecular dynamics simulation, while the dashed line Most of the time the cluster is far from the walls. Thus
represents results from a Monte Carlo simulation. measuring the distribution function at a wall is measuring the
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: : : : FIG. 8. Velocity distribution functions at the cold boundalsft
0 0.2 0.4 0.6 0.8 1 wall); (a) corresponds to the system referred to in Fig. 6, wttile
X corresponds to the system of Fig. 7. The solid line represents results
. . from a molecular dynamicgD) simulation, while the dashed line

FIG. 7. Number density, temperature, and heat flux p_rofl!es forrepresents results from a Monte CafSMC) simulation. The MD
N=1000, gN=0.5, andT;eu=0.01 (A:0'9998)'. The .SOl'd “r.]e results have been rescaled so that the area under the MD and DSMC
represents results from a molecular dynamlgs S|mglat|0n, while th?‘:urves is the same. There is a systematic overpopulation of slow
dots represent results from a Monte Carlo simulation. particles in the distributions obtained from Monte Carlo simula-

tions.

distribution function of the gas that surrounds the cluster.

This distribution function has a well-defined time averagetained absurd results, such as higher temperature in the
and exhibits apparently singular behavior for slow particlesmiddle of the system than near the walls.
diverging like|c| ™2 We compared molecular dynamics with direct-simulation
Imposing an external temperature gradient forces the clugyionte Carlo. Agreement between these two methods shows
ter against the colder wall, inhibiting its growth. Increasingthat the non-Gaussian feature of the distribution function
the temperature difference leads to a system in which thghay be predicted by the dissipative Boltzmann equation. As
cluster never forms: the system is completely fluidized. Thehe system approaches cluster formation, correlations settle
distribution function of the gas exhibits peculiar non-jn These correlations reduce the collision frequency among
Gaussian features: a smooth version of the aforementiongshrticles. DSMC neglects these correlations, and thus over-

singularity. Therefore any attempt at solving the Boltzmannestimates the number of collisions. This exaggerates the ef-
equation through moment methods must consider this featugcts of dissipation, producing steeper profiles.
in the initial ansatz, as is done for the problem of an infi-

nitely strong s_hock wave in Ref25] and [2_6]. In fact, a ACKNOWLEDGMENTS
solution for this problem was attempted using the four mo-
ment method of Refl27]. As mentioned in Refd.28], the We thank Rodrigo Soto, Aldo Frezzotti, and Rosa

fourth balance equation could not be freely chosen when thRamrez for helpful discussions. This work has been partially
boundary conditions were symmetric: some choices gave urfunded by Fundacio Andes, FONDECyT through Grant
defined results. As is natural, by not including the non-Nos. 2990108 and 1000884, and by FONDAP through Grant
Gaussian feature in the ansatz for this calculation we obNo. 11980002.
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