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Clustering and fluidization in a one-dimensional granular system: Molecular dynamics and
direct-simulation Monte Carlo method

JoséMiguel Pasini* and Patricio Cordero†

Departamento de Fı´sica, Facultad de Ciencias Fı´sicas y Matema´ticas, Universidad de Chile, Santiago, Chile
~Received 8 June 2000; published 23 March 2001!

We study a one-dimensional granular gas of pointlike particles not subject to gravity between two walls at
temperaturesTleft andTright . The system exhibits two distinct regimes, depending on the normalized tempera-
ture differenceD5(Tright2Tleft)/(Tright1Tleft): one completely fluidized and one in which a cluster coexists
with the fluidized gas. WhenD is above a certain threshold, cluster formation is fully inhibited, obtaining a
completely fluidized state. The mechanism that produces these two phases is explained. In the fluidized state
the velocity distribution function exhibits peculiar non-Gaussian features. For this state, comparison between
integration of the Boltzmann equation using the direct-simulation Monte Carlo method and results stemming
from microscopic Newtonian molecular dynamics gives good coincidence, establishing that the non-Gaussian
features observed do not arise from the onset of correlations.
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I. INTRODUCTION

Granular systems have been extensively studied due
to the theoretical challenges they present~for a recent re-
view, see Ref.@1#! and to the applications of industrial im
portance that spring from the rich phenomena they exh
~see Refs.@2# and@3# and references therein!. These systems
are characterized by an energy loss in collisions. This los
at the base of many interesting phenomena, such as inel
collapse@4,5#, where the particles collide infinitely often i
finite time, and clustering~for a sample of theoretical, simu
lational, and experimental approaches see Refs.@6–9#!. Dif-
ferent methods for keeping the system from collapsing h
been devised, such as subjecting the particles to Brow
forces@10,11#, and forcing through the boundaries by puttin
the system in a box with one or more thermal-like walls~see,
for example, Refs.@12–18#!. This work focuses on the latte
method.

Being one of the simplest types of forcing, several auth
@12,13,15–17,19# have studied a one-dimensional system
a box with one or two heated~stochastic! walls. Of these,
Refs. @12,13,15# and @16# study cluster formation, althoug
Refs.@15# and @16# are not strictly one dimensional.

This article studies a quasielastic one-dimensional sys
not subject to gravity between two thermalizing walls. W
focus on two control parameters: the total inelasticity para
eterqN[N(12r )/2, whereN is the number of particles an
r is the restitution coefficient, and the externally impos
temperature gradient. The parameterqN has been shown to
be relevant for the quasielastic system@13,17,19–21#. By
varying these parameters we determine the region in par
eter space where clustering is fully inhibited, obtaining
fluidized state. We present a singular feature of the distri
tion function for the clustering regime, and then study h
this feature is modified for the fluidized state.

*Electronic address: jpasinik@cec.uchile.cl
†URL: http://www.cec.uchile.cl/cinetica/
1063-651X/2001/63~4!/041302~7!/$20.00 63 0413
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In Ref. @12# the authors study a one-dimensional syst
of pointlike particles between an elastic and a heated w
They emphasize that a cluster inevitably forms away fr
the heated wall, regardless of how elastic the system is~as
long as it is not perfectly elastic!. They also study the sam
system, but with both walls expelling the particles with
fixed velocity. In this case they find that the cluster form
away from the walls and roams slowly about the syste
with two groups of fast particles connecting the cluster w
the ‘‘heated’’ walls.

In Ref. @13# the same system is studied for different typ
of boundary conditions at the heated wall. The stocha
boundary condition studied has the form of a power of
velocity times the ‘‘thermal’’ condition~the one that pro-
duces a Maxwell-Boltzmann distribution in the elastic cas!.
The authors show that when the power that multiplies
thermal condition is positive the test-particle equation~de-
rived from the Boltzmann equation! has a steady-state solu
tion. Thus the thermal case does not have a steady state
develops a cluster away from the heated wall. The mec
nism for the growth of the cluster is explained and verifi
numerically.

In Ref. @15# a similar system is studied: a long thin pipe
inelastic hard disks with heated walls~at the same tempera
ture! at the ends of the pipe and periodic side walls. The p
is thin enough for the particle order to be preserved. T
probability distribution for the distance between the cent
particles is studied. This distribution gives a markedly den
system near the center than in the elastic case, although
limit to the elastic case is smooth, unlike the strictly on
dimensional case of Refs.@12# and @13#. In Ref. @16# the
same author studies the velocity correlations that this sys
develops as inelasticity is increased, showing that a con
tent description must take these correlations into accoun

In this paper we revisit the strictly one-dimensional sy
tem of N pointlike particles interacting via collisions tha
conserve momentum but dissipate kinetic energy. To fix
tation, the particle velocities after a collision are given by

c185qc11~12q!c2 , c285~12q!c11qc2 , ~1!
©2001 The American Physical Society02-1
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whereci is the velocity of particlei before a collision, and
q5(12r )/2, r being the restitution coefficient. For th
elastic case (r 51) the particles simply exchange velocitie
Since the particles are pointlike, the system is then indis
guishable from a system in which the particles do not int
act.

This one-dimensional system is interesting because d
pation is the first order correction to a free gas. Besid
results for the one-dimensional system have been foun
have unexpected relevance for higher-dimensional proble
For example, in two-dimensions the particles involved in
elastic collapse lie roughly on a line@5#. Also, the
dissipation-induced temperature gradients calculated in
@17# for the one-dimensional case inspired the authors
look for dissipation-induced Rayleigh-Be´nard-like convec-
tion for a two-dimensional system without an externally im
posed temperature gradient@18#.

For a system with one thermal wall and open on the ot
side, under the influence of gravity, the quasielastic sys
may be kept fluidized@17,19#: any cluster that starts to form
is forced against the thermal wall, where it evaporates
@17# the test-particle equation@12,13,20#—which is the one-
dimensional~1D! Boltzmann equation where the limitN
→` is taken, but keepingqN fixed—is successfully applied
with close matching of theory and simulations even at
level of the distribution function.

The one-dimensional system under study is left to evo
between two thermal walls at temperaturesTleft and Tright ,
with Tleft<Tright . We define the parameter

D[
Tright2Tleft

Tright1Tleft
~2!

to quantify how far from the symmetrical case is the syste
Under the same conditions, an elastic system has a perf
bimodal velocity distribution with global homogeneous te
perature equal toATleftTright. For the sake of comparison, w

simulate systems withATleftTright51. HereD50 represents
a symmetrical setting, whileD51 represents an infinitely
strong temperature gradient.

As in Ref. @12#, for D50 a cluster unavoidably form
away from the thermal walls. After forming, the cluster pe
forms an apparently random walk about the center, grow
in size ~and therefore mass! while the rest of the system
grows more rarefied. With the decrease in density of
surrounding gas and the increased inertia of the cluster
eventual collision with one of the walls is to be expecte
When this happens part of the cluster evaporates, and wh
left of it is expelled from the wall~see Fig. 1!, thus restarting
the growth process. Thus not only is the system hig
clumped, but also in a nonsteady state. Nevertheless, the
that is far from the random-walk zone has a well-defin
time average for the distribution function, as is seen in F
2. A noteworthy feature of this distribution is that it exhibi
apparently singular behavior for slow velocities.

SettingD5” 0 the symmetry of the system is broken. F
D!1 the cluster performs a slightly asymmetric rando
walk, spending more time near the colder wall, and theref
colliding more often with it. Thus the cluster cannot grow
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much as it did in the symmetric case before colliding with
wall. By increasingD the cluster-wall collision frequency
grows, even obtaining short ‘‘windows’’ in which the cluste
completely evaporates.

By further increasingD these windows grow larger until a
point is reached where no cluster forms. In this fashion
totally fluidized state is achieved, which may be tracta
with the dissipative Boltzmann equation. However, the d
tribution function obtained from the molecular dynami
~MD! simulations exhibits a peculiar non-Gaussian feat
for slow velocities. This feature is a smoothed version of
apparent singularity of the symmetric case.

To discern whether this non-Gaussian feature is due
correlations or is present before they settle in, we compa
Newtonian molecular dynamics results with those obtain
through the direct-simulation Monte Carlo method~DSMC!,
which neglects correlations. The density profiles show
denser system towards the colder wall, although when
system is sufficiently far from the onset of clustering t
density has a maximum slightly away from the wall. Th
profiles and the velocity distribution function obtained fro
DSMC are practically indentical to the ones obtained fro
molecular dynamics, except when the system is very clos
the onset of clustering. At this point the DSMC veloci
distribution shows a slight~but systematic! overpopulation of

FIG. 1. ~a! Time evolution of the number of particles inside th
cluster for a system ofN51000 particles between two walls at th
same temperature forqN50.01. Note the plateau after each fall.~b!
Trajectory of the cluster for the same time interval. The walls
placed atx50 and 1. The temperature at the walls is unity, and th
a unit of time measures how long it takes for a particle with t
thermal speed to cross the system.
2-2
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slow particles, compared to the MD results, and a co
sponding relative increase in the density at the colder w
Both the MD and DSMC results exhibit the sharp no
Gaussian feature even far from the clustering regime, wh
both descriptions coincide. This will lead us to conclude t
this feature does not arise from correlations.

II. SIMULATION METHOD

We simulate the system through event-driven molecu
dynamics@22# and through direct-simulation Monte Car
@23#. The direct-simulation Monte Carlo procedures use
null-collision technique@24# where, overestimating the colli
sion frequency~using the maximum relative velocity within
a cell!, the number of collisions to beattemptedis calculated
through a Poisson process. In the next step the collisions
attempted, choosing at random two particles within the c
and making them collide with a probability proportional
their relative velocity. Most of the molecular dynamics a
DSMC simulations were done withN51000 particles.

In the MD simulations we detect clusters using a geom
ric criterion: we consider chains of particles that are nea
than a critical distance~in our case 1026 and 1025, to be
certain that the conclusions are independent of the cho!.
The system length is one, and with a thousand particles
mean distance between neighbors for a homogeneous sy
is 1023. Thus we detect particles that are uncommonly n

FIG. 2. ~a! Velocity distribution function at the left wall for the
system referred to in Fig. 1. The distribution for particles reach
the wall (c,0) exhibits a sharp peak.~b! The same distribution
multiplied by Aucu to show that the peak behaves likeucu21/2. The
microscopic velocityc is measured in units of the thermal speed
04130
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by three orders of magnitude. We discard chains of len
three or less, since they may be random encounters. Mea
ing the total length of the cluster we have found that o
average it is of the order of 1025; thus the choice of 1025 as
link-link distance is much larger than the true distance
tween them.

As already stated, the boundary conditions are such
the ~homogeneous! temperature of the corresponding elas
system~equal toATleftTright) is 1.

III. RESULTS

A. Clustering regime

Figure 1 shows the nonsteady state of a granular sys
between two walls at the same temperature forqN50.01. A
cluster forms away from the walls, performing a rando
walk of varying amplitude. When the cluster reaches a w
part of it evaporates, and the growth process begins ane

As is usual for the quasielastic case, we relabel the p
ticles when they collide. This enables us to visualize t
system as a group of barely interacting particles pass
through each other.

The picture for cluster evolution, as explained before,
the following: the cluster grows because the slowest p
ticles, due to the asymmetry of the distribution function, dr
towards the cluster@13#. As it grows, the density of the ga
surrounding it decreases, with the consequent saturatio
growth. Thus we have a ‘‘Brownian particle’’ of increasin
mass moving in an increasingly rarefied medium. This ‘‘p
ticle’’ will be increasingly less affected by the surroundin
medium, until it can no longer be kept away from the wal

The cluster moves several orders of magnitude slo
than the thermal speed~three orders of magnitude in Fig. 1!.
Upon reaching a wall, the front liners strike the wall and a
expelled by it much faster than the other cluster memb
These particles pass through the cluster, transferring mom
tum to it, as described in Ref.@12#. Thus these fast particle
push the cluster away from the wall, where it can abs
particles again. The fast particles, however, no longer bel
to the cluster.

Since the slowest particles in the gas are the ones that
be absorbed by the cluster@13#, it is the number of slow
particles in the gas that will determine the cluster’s grow
rate. After the cluster strikes a wall, the expelled partic
will be fast particles, and they will not contribute to th
growth of the cluster during the time it takes for the gas
cool down again: the only particles available for absorpt
are the ones that were available before the cluster-wall
lision. This explains why the cluster keeps growing at a
proximately the same rate it did before the collision. Aft
the gas has cooled down, the growth rate returns to its n
mal value. This is the end of the plateau seen in Fig. 1 a
each cluster-wall collision.

To quantify the evaporation process we proceed as
Refs.@1# and @12#: as soon as the first particle belonging
the cluster reaches a wall, it is expelled with a speed m
higher than the cluster velocity; thus we may consider
ideal situation of a cluster ofM particles at rest being
stricken by a fast particle with velocityv ~in this casev

g

2-3
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JOSÉMIGUEL PASINI AND PATRICIO CORDERO PHYSICAL REVIEW E63 041302
'1). After colliding with the first particle in the cluster, th
new fast particle’s speed will be (12q). Thus, after travers-
ing the cluster, the fast particle’s velocity will be (12q)N.
Since momentum is conserved in collisions, the center
mass of the cluster will have acquired a speed of

vCM5
12~12q!N

N
5

12S 12
qN

N D N

N
. ~3!

Considering the caseN@1 with fixedqN, as in Ref.@17#, we
may simplify this expression to

vCM'
12e2qN

N
. ~4!

By further considering the caseqN!1 we getvCM'q. In
this limit, if the cluster reaches the wall with velocityv0 and
is expelled from it with velocityv1, the numberm of par-
ticles evaporated will satisfyuv12v0u'mq. For the situation
shown in Fig. 1,v0 andv1 are typically of the order of 1023

andq51025, hence the number of particles evaporated w
be of the order of 102.

Even if the system is in a nonsteady state, the gas at
walls ~far from the random-walk zone! has a well-defined
time average for the distribution function. The distributio
function at the left wall is shown in Fig. 2. There is a
apparent singularity for slow velocities. The distribution
asymmetric as it should be, since the particles leaving
wall (c.0) follow a Gaussian distribution. Figure 2 als
shows the distribution multiplied byAucu. Since the limit of
Aucu f for c→02 is finite and nonzero, we conclude that th
distribution function exhibits a singularity that behaves li
ucu21/2 for slow velocities.

As shown in Ref.@13#, whenD50 ~the symmetric case!
the distribution shown in Fig. 2 is not a solution of th
steady-state test-particle equation:

c]xf ~x,c,t !5qN]c@ f ~x,c,t !M ~x,c,t !#, ~5!

where

M ~x,c,t !5E
2`

`

f ~x,c8,t !~c2c8!uc2c8udc8. ~6!

To establish this, let us study the behavior for smallc of a
solution of this equation. Assume that, for smallc, f (x,c
'0)' f 0(x)c2a, with a,1 in order to have a finite densit
in the vicinity of x. Furthermore, assume thatM (x,c'0)
'M0(x)cb. Inserting this behavior in Eq.~5! we obtain

]xf 0'qNM0f 0~b2a!cb22. ~7!

Thus, in order to keepf 0 ~the amplitude of the singularity!
finite, we must have eitherb5a or b>2. Integrating the
distribution of Fig. 2 we obtainb51. Sinceb,2, we must
havea51. But this corresponds to a nonintegrable distrib
tion, and therefore the distribution cannot be steady.
04130
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B. Inhibition of cluster formation

Figure 3 shows the regions in (D,qN) space where clus
tering is inhibited forN51000. As is to be expected, as th
inelasticity increases, a stronger temperature gradient is
essary to inhibit cluster formation.

To discern whether the non-Gaussian features of the
locity distribution function are derived from correlations
the system we compared results from MD simulations~full
Newtonian dynamics! with results from DSMC simulations
~no velocity correlations assumed!. Figures 4 and 5 show this
comparison for a case far from the clustering thresholdD
50.6 andqN50.1). The temperatures of the left and rig
walls are chosen so that the global temperature for the ela
case~equal toATleftTright) is 1. The curves match almos
exactly.

At the level of the distribution function, the results als
match closely. The peculiar non-Gaussian feature of the
tribution function is clearly seen in Fig. 5. There is som
slight mismatch near the peak.

For the fluidized case, since momentum is conserved
the system is stationary, the pressure is constant throug
the system. The number density and the granular tempera
calculated here are related byp5nT(T in energy units!.
Thus when the normalized densityn/N varies little through-
out the system@n/N'11e(x)#, the normalized temperatur
is

T

T0
5

p/n

p/n0
5

n0 /N

n/N
5

1

11e~x!
'12e~x!, ~8!

thus obtaining the nearly symmetric profiles seen in Figs
and 6.

Figures 6–8 compare the MD and DSMC results for ca
near cluster formation. The non-Gaussian feature of the
tribution function shows a systematic deviation for DSM

FIG. 3. Limiting values ofD[(Tright2Tleft)/(Tright1Tleft) as a

function of qN for N51000. ATleftTright51 throughout. The solid
curve shows the lowest possible valueD can take without detecting
clusters. The dashed curve shows the largest possible valueD can
take with easy cluster detection. The small region between
curves represents a zone where clusters appear erratically.
2-4
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CLUSTERING AND FLUIDIZATION IN A ONE- . . . PHYSICAL REVIEW E 63 041302
FIG. 4. Number density, temperature, and heat flux profiles
N51000, qN50.1, andTleft50.5 (D50.6). The solid line repre-
sents results from a molecular dynamics simulation, while the d
represent results from a Monte Carlo simulation. The density
temperature are related byp5nT and, since momentum is con
served and the system is stationary, the pressure is con
throughout the system. The density and temperature profiles
almost symmetrical because the normalized density is very clos
unity.

FIG. 5. Velocity distribution function at the cold boundary~left
wall! for the system referred to in Fig. 4. The solid line represe
results from a molecular dynamics simulation, while the dashed
represents results from a Monte Carlo simulation.
04130
simulations: there is overpopulation for slow velocities. Th
is explained by considering that the DSMC method, like t
Boltzmann equation, neglects correlations. When the sys
approaches the clustering regime, increased dissipation
duces correlations which tend to make the particles col
less@16#. In DSMC these correlations are neglected, with t
corresponding systematic overestimation in the collision f
quency. This overestimation results in a lower temperatur
the system about the density peak.

IV. CONCLUSIONS

We have shown that a system not subject to gravity
tween thermal walls unavoidably reaches a nonsteady s
when the walls are at the same temperature. A cluster fo
in the bulk, slowly roaming about the system while abso
ing particles. As it grows, the amplitude of the random wa
increases, until at last the surrounding gas cannot keep
cluster away from the walls. When the cluster reaches a w
a part of it is ejected by the wallthrough the cluster~rela-
beling the particles on collisions!, effectively pushing the
cluster away from the wall, and leaving it to grow again.

Most of the time the cluster is far from the walls. Thu
measuring the distribution function at a wall is measuring

r

ts
d

ant
re
to

s
e

FIG. 6. Number density, temperature, and heat flux profiles
N51000,qN50.1, andTleft50.84 (D50.173). The solid line rep-
resents results from a molecular dynamics simulation, while
dots represent results from a Monte Carlo simulation.
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JOSÉMIGUEL PASINI AND PATRICIO CORDERO PHYSICAL REVIEW E63 041302
distribution function of the gas that surrounds the clus
This distribution function has a well-defined time averag
and exhibits apparently singular behavior for slow particl
diverging like ucu21/2.

Imposing an external temperature gradient forces the c
ter against the colder wall, inhibiting its growth. Increasi
the temperature difference leads to a system in which
cluster never forms: the system is completely fluidized. T
distribution function of the gas exhibits peculiar no
Gaussian features: a smooth version of the aforementio
singularity. Therefore any attempt at solving the Boltzma
equation through moment methods must consider this fea
in the initial ansatz, as is done for the problem of an in
nitely strong shock wave in Ref.@25# and @26#. In fact, a
solution for this problem was attempted using the four m
ment method of Ref.@27#. As mentioned in Refs.@28#, the
fourth balance equation could not be freely chosen when
boundary conditions were symmetric: some choices gave
defined results. As is natural, by not including the no
Gaussian feature in the ansatz for this calculation we

FIG. 7. Number density, temperature, and heat flux profiles
N51000, qN50.5, andTleft50.01 (D50.9998). The solid line
represents results from a molecular dynamics simulation, while
dots represent results from a Monte Carlo simulation.
04130
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tained absurd results, such as higher temperature in
middle of the system than near the walls.

We compared molecular dynamics with direct-simulati
Monte Carlo. Agreement between these two methods sh
that the non-Gaussian feature of the distribution funct
may be predicted by the dissipative Boltzmann equation.
the system approaches cluster formation, correlations s
in. These correlations reduce the collision frequency am
particles. DSMC neglects these correlations, and thus o
estimates the number of collisions. This exaggerates the
fects of dissipation, producing steeper profiles.
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FIG. 8. Velocity distribution functions at the cold boundary~left
wall!; ~a! corresponds to the system referred to in Fig. 6, while~b!
corresponds to the system of Fig. 7. The solid line represents re
from a molecular dynamics~MD! simulation, while the dashed line
represents results from a Monte Carlo~DSMC! simulation. The MD
results have been rescaled so that the area under the MD and D
curves is the same. There is a systematic overpopulation of s
particles in the distributions obtained from Monte Carlo simu
tions.
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